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Abstract. A model of magnetoelastic coupling has been developed which explains the volume
and anisotropic magnetostriction thermal dependences of the fluctuating-valence intermetallic
compounds Ce(Ni1−xCox )Sn, above their valence transition temperatures and in a strong
magnetic field (14 T), in the range 0.35 6 x 6 0.40. The model assumes narrow 4f–conduction
electron hybridized bands, where only the ground-state|±3/2〉 bands are populated, and that the
magnetoelastic coupling stems from the interaction of the Ce3+ ion with the site crystal electric
field. As a result the values of the corresponding microscopic magnetoelastic coupling parameters
of volume (Mα,1) and tetragonal (Mα,2) characters have been determined forx = 0.38. Their
values (about 10–50 K/Ce3+) are unusuallylarge for unstable 4f-shell intermetallics.

1. Introduction

Magnetostriction is a phenomenon which needs some preliminary considerations, mainly
because we are dealing with 4f fluctuating-valence (FV) systems. For itinerant or band
electrons we have to deal with their localized or quasi-localized character. That is
because the only coupling between the isotropic spin magnetism and the atomic orbital
structure is spin–orbit coupling, which induces a non-zero average orbital magnetic moment.
This moment in 3d transition metals is, however, very weak. Magnetic anisotropy and
magnetostriction arise from the interaction of the electronic orbital momentum with the site
crystal electric field (CEF). It is noticeable that the contribution to the magnetic anisotropy
and magnetostriction is due, mainly, to high-symmetry points of the Brillouin zone (BZ),
where orbital states are not mixed by interband hopping and their orbital momentum is
almost a constant of motion [1].

On the contrary, in well localized 4f states their coupling to the lattice CEF is
rather weak, if compared to spin–orbit coupling. Magnetic anisotropy and anisotropic
magnetostriction again arise from the interaction of the rather well defined ionic orbital states
with the site CEF. However, if these localized states become hybridized with the conduction
band electrons, the nature of this hybridization strongly influences their interaction with
the local environment. In this way the band or quasi-band character of the hybridized
4f electrons can be essential to their magnetoelastic behaviour, which is the situation for
FV systems. This hybridization does not allow us to consider the local states in FV systems
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as infinitely narrow. In fact, one has to consider maxima of the density of electronic
states with given widths. These widths and the energy centres of these maxima, measured
for example with respect to the Fermi levelµ, determine the existence of local magnetic
moments [2]. Therefore their magnetoelastic behaviour should depend on the detailed nature
of these quasi-local states. Then we must consider, in principle, that the anisotropic and
volume magnetostrictions in FV systems should depend on field, temperature and pressure
in quite a complex way.

In the present work we have dealt with the series of pseudo-ternary intermetallic
compounds Ce(Ni1−xCox)Sn. A thorough description of their structural, transport, magnetic
and magnetoelastic properties together with the observed magnetic excitations can be found
elsewhere [3, 4]. Here we shall summarize only those experimental aspects which are
relevant to our work. The present series crystallizes in the orthorhombic TiNiSn structure
with Pnma space group, the Co–Ni being probably substitutionally disordered [5]. CeNiSn
is a small-gap (about 4 K) Kondo insulator [4, 6], the gap at the Fermi level decreasing
with Co addition and finally disappearing forx = 0.25, according to electrical resistivity
measurements [4, 7]. The temperature dependence of the low-field susceptibilityχ shows
a dramatic change with Co concentration [4, 7]; for 06 x 6 0.34, χ(T ) has a form which
shows an increasing trend towards FV behaviour with increasingx: for x = 0.34, χ(T )

exhibits a broad maximum at 95 K; for 0.35 6 x 6 0.40, χ(T ) exhibits a sharp drop
at temperatures between 40 and 75 K (dependent onx). Therefore for the Co content
range 0.35 6 x 6 0.40 the system depicts, at temperaturesTv ' 40–75 K, a first-order
valence transition, towards an electronic average configuration 4f1−δ. A giant contraction
(1ωs ≈ 0.3% for x = 0.38) in the spontaneous volume magnetostrictionωs measured by
both neutron diffraction and thermal expansion is observed atTv [3, 4]. For the above range
of x, the unit cell is pseudo-tetragonal, i.e. the lattice parametersa ' b [4]. (Note that
we have arbitrarily calleda andb the almost similar lattice parameters andc, the unequal
lattice parameter, as customarily done for tetragonal symmetry.) Inelastic neutron scattering
(INS) measurements [4] performed aboveTv on thex = 0.38 compound give a quasi-elastic
line, together with two crystal-field excitations at 26.5 meV and 42.1 meV. Magnetostriction
measurements performed at an applied magnetic field of 14 T on polycrystalline samples
show a large volume magnetostrictionω and a large anisotropic magnetostrictionλt , for the
abovex range, with first-order jumps atTv and a strong decrease just belowTv [3].

Still, we would like to look for an experimental situation where the above-mentioned
limitations for a theoretical description could be relaxed, at least within a given range
of external parameters, e.g. temperature. However, the nature of the temperature-induced
phase transition from the high-valence state to the FV state observed in the Ce(Ni1−xCox)Sn
system [3, 4, 7] is complicated by the fact that it is probably a many-body effect, which
could be properly explained either within the Anderson-lattice Hamiltonian [8] or within
the tight-binding Hubbard framework [9]. In this work we are interested in the temperature
dependences of the field-induced irreducible strains of the following [10]: volume strain
εα,1 and tetragonal strainεα,2. The temperature range that we are interested in is only
aboveTv and we shall focus on thex = 0.38 compound, whereω and λt are the largest
measured magnetostrictions among the present series, and where we deal with the INS
linewidths needed for our calculations as discussed in section 2.1. We shall show that in
such a temperature range the above dependences can be understood within the single-ion
crystal-field model of magnetostriction for itinerant magnets [1]. We could naturally extend
our model to the whole interval 0.35 6 x 6 0.40, but the lack of INS data makes this task
unfeasible.
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2. Model of single-ion magnetostriction for fluctuating-valence systems

The model developed consists of three stages:

(i) the determination of the Ce3+-ion crystal energy levels and wavefunctions in the
presence of an applied magnetic field, assuming some degree of itineracy because of the
4f–conduction electron band hybridization;

(ii) the calculation of the single-crystal irreducible equilibrium strainsεα,1 andεα,2 for
the itinerant system;

(iii) the calculation ofω and λt for polycrystallinesamples, in order to compare our
model results with the available experimental data, in this way obtaining the magnetoelastic
coupling parameters.

We should note that Ce(Ni1−xCox)Sn intermetallics show unusually large magnetostric-
tions among the rare-earth unstable 4f-shell intermetallics [11, 12]. Therefore understanding
the origin of the magnetoelastic coupling for the present FV compounds is of considerable
interest.

Some previous considerations are of interest, as fully described elsewhere [1]. Our
calculations will be done within the tight-binding approximation, using the usual Bloch
functions |k〉 with amplitudesφλ(r − l) ≡ |λ〉 ≡ |mJ 〉, corresponding to the magnetic
quantum numbermJ , the projection of the angular momentumJ = 5/2. k and l are the
electron wavevector and the lattice site, respectively. It is a well known result [13–15] that
the main contribution to the magnetoelastic coupling comes from those regions of the BZ
where the symmetry is sufficiently high. This enormously simplifies the magnetostriction
calculation, because such regions are in fact reduced to a few points of high symmetry in
the BZ. Also, in order to have magnetostriction, those states must be degenerate, and this
degeneration is lifted by the Zeeman interaction as we shall see in section 2.1. An additional
condition must be fulfilled, and it is that the energy of those high-symmetry Bloch states
should be sufficiently close to the Fermi level. This condition is required because, within
our approach, the orbital magnetic moment is not quenched for the states in thosek regions,
and it is completely quenched elsewhere, even in the presence of strong spin–orbit coupling.
This quenching is well known to be due to interband site hopping. Our basis functions of
one-electron states are the six 4f1 |mJ 〉 states withmJ = ±5/2, ±3/2, ±1/2. An even
further simplification is to consider only a singlek point in the BZ. As we shall see, our
crystalline cell has a pseudo-tetragonal symmetry, and also the BZ; then some particular
k point within the BZ axis and close to the Fermi surface wavevectorkF would probably
be the most important in determining the magnetoelastic coupling interaction.

2.1. The Ce3+-ion model Hamiltonian and energy levels

The hybridized 4f–conduction electron HamiltonianH at sitel is modelled in the following
way:

H = HCF + Hz + Hme + Hel (1)

where the different Hamiltonians are as follows. Because they are referred to a single
ion, they are translationally invariant and therefore the matrix elements〈k′; λ′|H |k; λ〉
are k independent; hence we can treatH as a localized-electron Hamiltonian. For the
CEF Hamiltonian we shall initially take that corresponding to orthorhombic symmetry [16].
This Hamiltonian can be considerably simplified if we take into account the following
experimental results. Basal plane anisotropy should be small because in CeNiSn the low-
field susceptibilities measured along thea and b crystalline axes are similar [17]; the
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magnetic anisotropy at a high field (14 T), derived from magnetization measurements on
free and fixed single-grain powders, is weak [18]. Also, as mentioned before, for the range
of Co concentrations at present considered, the basal plane lattice parametersa ' b. Those
results agree well with the above-mentioned observation of only two INS peaks at 55 K for
x = 0.38 [4]. All these results allow us to consider apseudo-tetragonalsymmetry with
null basal plane (a, b) anisotropy and take

HCF = B20O
0
2 + B40O

0
4 (2)

where O0
2 and O0

4 are Stevens operators [19] andBn0 are CEF parameters. The basis
functions for Hamiltonian (2) are the three doublets| ± 5/2〉, | ± 3/2〉 and | ± 1/2〉. The
corresponding energy levelsελ can be determined from the above INS data at 55 K. First
of all, INS performed on the isomorphous compound CePtSn shows that the ground state
(GS) is the| ± 3/2〉 doublet [20]. Considering the selection rules for magnetic dipole
transitions, the CEF energy level scheme deduced for the Ce3+ ion is ε±1/2 = 16.35 meV,
ε±3/2 = −25.73 meV andε±5/2 = 9.38 meV, the energies being measured from the
unperturbed multiplet|J = 5/2〉. The CEF parameters obtained areB20 = 0.142 meV/Ce3+

andB40 = 0.086 meV/Ce3+, not far from those of CePtSn [20]. The Zeeman Hamiltonian
in the presence of an applied fieldH is the usual Hamiltonian (1).

The magnetoelastic coupling Hamiltonian, assuming only that the modesεα,1 and εα,2

are active, is given by [10]

Hme = −Mα
11J

2εα,1 − Mα
21J

2εα,2 −
√

3

2
Mα

12O
0
2εα,1 −

√
3

2
Mα

22O
0
2εα,2 (3)

where Mα
ij are single-ion magnetoelastic parameters. Finally the elastic Hamiltonian in

terms of the pseudo-tetragonal symmetry elastic stiffness constantsCα
ij can be found in

[10].
It should be noted that no exchange interaction between the 4f band and the Ni and Co 3d

bands has been included in the Hamiltonian (2). The reason is that Ni does not have any
magnetic moment in the present phases [18] and Co appears as paramagnetic according to
magnetostriction measurements performed in the isomorphous compound La(Ni0.65Co0.35)Sn
[4]. Therefore the Co and Ni sublattices are quite unable to polarize the 4f band through
an eventual exchange mean field.

The Hamiltonian (1) was diagonalized forH parallel to thec axis and within the basal
plane. In the first case it is diagonal; forH ⊥ c it is not but, because the CEF energy
is much larger than the Zeeman energy at the applied field (14 T), we have neglected the
off-diagonal Zeeman matrix elements except those within the| ± 1/2〉 Hamiltonian matrix
box. In this way it is straightforward to show that the Ce3+-ion energy levels are as follows.

For H‖c,

E±5/2 = ε±5/2 ± (− 15
7 )µBHc + 5

2∑
i=1

Mα,iεα,i (4a)

E±3/2 = ε±3/2 ± (− 9
7)µBHc −

2∑
i=1

Mα,iεα,i (4b)

E±1/2 = ε±1/2 ± (− 3
7)µBHc − 4

2∑
i=1

Mα,iεα,i (4c)

where the upper and lower signs correspond on both sides of equation (4). We have defined
the effective magnetoelastic parameters

Mα,1 = −
[

35
4 Mα

11 +
√

3Mα
12

]
Mα,2 = −

[
35
4 Mα

21 +
√

3Mα
22

]
. (5)
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For H ⊥ c (a, b plane),

E±5/2 = ε±5/2 + 5
2∑

i=1

Mα,iεα,i (6a)

E±3/2 = ε±3/2 −
2∑

i=1

Mα,iεα,i (6b)

E±1/2 = ε±1/2 ± (− 3
7)µBHa − 4

2∑
i=1

Mα,iεα,i . (6c)

2.2. Calculation of the irreducible magnetostrictive strains

The total energy of the Ce-ion sublattice is given by

U = Umel + Uel. (7)

The unit-volume magnetoelastic energy is given, for electrons of energyε, by

Umel =
±5/2∑

λ=±1/2

∫ ∞

−∞
ρλ(ε − Eλ)fFD(ε − µ) dε (8)

whereρλ is theλ-subband density of states andfFD is the Fermi–Dirac distribution function.
Eλ are the centres of the energy subbands, as given by equations (4) and (6).Uel is the
elastic energy [10].

The equilibrium strains are obtained by minimization ofU againstεα,i , i = 1, 2, i.e.

∂U

∂εα,i
= −

±5/2∑
λ=±1/2

∂Eλ

∂εα,i

∫ ∞

−∞
ερ ′

λ(ε − Eλ)fFD(ε − µ) dε + Cα
iiε

α,i + Cα
12ε

α,k = 0

i = 1, 2; k 6= i (9)

whereρ ′ ≡ dρ/dε. We shall model our 4f-hybridizedλ-band density of states by rectangular
functions of width 2Wλ, centred aroundEλ. These widths were obtained from the widths at
the HWHM of the INS lines at 55 K forx = 0.38 [4], amounting to 2W±1/2 = 14.6 meV,
2W±3/2 = 4.4 meV and 2W±5/2 = 14.6 meV. Then we shall have

ρ ′(ε − Eλ) = 1

2Wλ

[δ(ε − Eλ + Wλ) − δ(ε − Eλ − Wλ)] (10)

whereδ is the Dirac delta function. Substitution of (10) in (9) yields the following system
of linear equations:

−
±5/2∑

λ=±1/2

{
1

2Wλ

(
∂Eλ

∂εα,i

) [
Eλ − Wλ

1 + exp(β(Eλ − Wλ − µ))
− Eλ + Wλ

1 + exp(β(Eλ + Wλ − µ))

]}
+Cα

iiε
α,i + Cα

12ε
α,k = 0 i = 1, 2; k 6= i (11)

whereβ ≡ 1/kBT . The solution of the system of equations (11) immediately gives the
equilibrium irreducible strains

εα,i = − 1

1α

±5/2∑
λ=±1/2

({
Cα

kk

∂Eλ

∂εα,i
− Cα

12
∂Eλ

∂εα,k

}
nλ

)
i, k = 1, 2; i 6= k (12)

wherenλ is the number of states within theλ subband, i.e.

nλ = 1

2Wλ

[
Eλ + Wλ

1 + exp(β(Eλ + Wλ − µ))
− Eλ − Wλ

1 + exp(β(Eλ − Wλ − µ))

]
; (13)
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in equations (12),1α = Cα
11C

α
22 − (Cα

12)
2. Equations (12) can be particularized for the

applied magnetic fieldH parallel and perpendicular to the pseudo-tetragonalc axis, as we
saw before.

2.3. Calculation of the polycrystal volume and anisotropic magnetostrictions:
magnetoelastic coupling parameters

Our experimental results [3] deal withpolycrystallinesamples, i.e. we dispose of the volume
magnetostrictionω and anisotropic magnetostrictionλt . In order to apply the theory for
single crystals developed above, we should expressω andλt in terms ofεα,1 and εα,2 for
any direction of the applied fieldH with respect to the crystal axes (a, b, c). This means
the difficult task of diagonalizing Hamiltonian (1) for an arbitrary field direction, calculating
εα,1 andεα,2 in each case, and averaging the strains for the polycrystal. This difficulty can
be considerably reduced assuming the following reasonable simplification. We note that at
an applied field of 14 T the Zeeman energies are at least one order of magnitude smaller
than the CEF energies. Therefore, if we attach a frame (X, Y, Z) to the polycrystalline
sample and if for example OZ‖H, for the grains with theirc axis between the ‘extreme’
values, i.e. withc‖OZ, and withc‖OX andc‖OY , their total energies will differ very little
from the extreme grain energies. This allows us to assume that only the extreme grains
are relevant to the polycrystal magnetostriction calculation. We shall call ‘0 grains’ those
with their c axis parallel to0 = X, Y, Z and disposed in the way schematically shown in
figure 1. With this assumption we shall proceed to calculateω andλt .

Figure 1. Schematic set-up showing the polycrystal attached frame (X, Y, Z), together withX,
Y and Z types of grains, with indication of their single-crystal frame (a, b, c). The magnetic
field H is applied along theZ axis.

For H‖OZ the strains along the frame axes are

(1l/ l)‖OX = εcc(X) + εbb(Y ) + εaa(Z) (14a)

(1l/ l)‖OY = εcc(Y ) + εaa(X) + εbb(Z) (14b)

(1l/ l)‖OZ = εcc(Z) + εaa(Y ) + εbb(X) (14c)

where εii(0), i = a, b and c, are the ‘0-grain’ Cartesian strains referred to thecrystal
frame (a, b, c). Considering that every0-frame axis is equally grain type populated, and
assuming isotropy both within the grain basal plane (a, b) and within the (X, Y ) plane, we
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obtain the following strains for the polycrystalline sample:

(1l/ l)‖H = 1
3(εcc(Z) + 2εaa(X, Y )) (15a)

(1l/ l)⊥H = 1
3(εcc(X) + εaa(X) + εaa(Z)). (15b)

Therefore for the polycrystalline grain ensemble we obtain, after straightforward
manipulations, and in terms of the irreduciblecrystal strains, the following volume strain
ω anisotropic strainλt :

ω = (1l/ l)‖H + 2(1l/ l)⊥H = 1
3(εα,1(H‖c) + 2εα,1(H‖a)) (16a)

λt = (1l/ l)‖H − (1l/ l)⊥H =
√

3

3
εα,2(H‖c). (16b)

In writing the last equality in equation (16b) we have considered that, because of the
tetragonal symmetry,εα,2(X) = −εα,2(Y ). Note that, indeed, in equations (16) the0 index
becomes substituted by the conditions that the magnetic field is applied parallel toa or c.
The strains (16) are given by equations (12) and (13), with the energy levelsEλ given by
equations (4) and (6), obtaining

ω = − 1

31α

±5/2∑
λ=±1/2

κλ〈{[Cα
12M

α,2 − Cα
22M

α,1]nλ}H‖c + 2{[Cα
12M

α,2 − Cα
22M

α,1]nλ}H⊥c〉
(17a)

λt = − 1√
31α

±5/2∑
λ=±1/2

κλ〈{[Cα
12M

α,1 − Cα
11M

α,2]nλ}H‖c〉 (17b)

whereκ±1/2 = 4, κ±3/2 = 1 andκ±5/2 = 5.

3. Comparison with experimental results: magnetoelastic coupling parameters,
discussion and conclusions

In figure 2 we present the thermal variation of theω and the λt magnetostrictions
for the compound Ce(Ni0.62Co0.38)Sn at an applied magnetic field of 14 T, once the
magnetostrictions associated with the Co–Ni sublattice have been subtracted. So far we
have not considered magnetostriction associated with the Co–Ni sublattice. The reason is
that such magnetostriction is at least one order of magnitude smaller than that for Ce3+,
as shown by the compound La(Ni0.65Co0.35)Sn [4], where La is non-magnetic and hence
its magnetostriction should be associated with the Co–Ni sublattice. As we mentioned
before, magnetostriction isotherms in the above compound are quadratic with the applied
magnetic field, indicating a paramagnetic state for the Co band. Although we have
elsewhere [1] developed a model of magnetostriction for 3d-band ferromagnetic metals,
we considered it more reliable, instead of calculating the magnetostrictions contributed by
the paramagnetic Co–Ni sublattice, (with the introduction of additional fitting parameters),
to subtract the corresponding La compound magnetostrictions and thus obtaining the Ce
sublattice contributions, as shown in the above-mentioned figure 2. In fact, our main goal
is to obtain the magnetoelastic parametersMα,1 andMα,2 associated with the Ce3+ ion in
the present Ce(Ni0.38Co0.62)Sn compound.

In order to compare our model with the experimental magnetostriction results, a further
simplification can be introduced. We note that the ratioω/λt is approximately constant
in the temperature range 50–170 K (figure 3). According to equations (17) this can be
explained if only the GS subband| ± 3/2〉 is populated, the remainder of the subbands
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Figure 2. Thermal dependences of the volume magnetostrictionsω(1) and anisotropic
magnetostrictionsλt (◦ ) associated with the cerium sublattice, at an applied magnetic field
of 14 T, for the Ce(Ni0.62Co0.38)Sn compound. The full curves are the theoretical model fits
according to equations (18) (see section 3 for details).

being almost empty. This can happen if the following conditions are fulfilled, as in fact
they are: the chemical potentialµ is close to the GS; the applied magnetic field is strong
enough to split the GS| ± 3/2〉 doublet an energy greater than the band width 2W±3/2; the
next doublet| ± 1/2〉 energy separation from the GS doublet (190 K) is smaller than the
upper thermal excitation energy considered above (170 K) and also than the GS Zeeman
energy (11.5 K); 2W±3/2 is relatively narrow if compared with 2W±1/2 and 2W±5/2 (see
section 2.3). Little is known about the elastic stiffness constants of the present series; for
CeNiSn we know thatC11 = 1.3×1012 erg cm−3 andC33 = 0.82×1012 erg cm−3 [21]. The
symmetry elastic constantsCα

ij for pseudo-tetragonal symmetry are related to the Cartesian
constants in the well known form [22].

We shall make a further approximation which consists in decoupling theεα,1 and εα,2

modes, i.e. we assume thatCα
12 = 0. With all the above assumptions, equations (17) are

strongly simplified, i.e.

ω = Mα,1

3Cα
11

∑
λ=±3/2

{〈nλ〉H‖c + 2〈nλ〉H⊥c} (18a)

λt = Mα,2

√
3Cα

22

∑
λ=±3/2

〈nλ〉H‖c. (18b)

In figure 2 we show the ‘best’ fit by equations (18) of theω andλt thermal variations
for the cerium sublattice contributions, in the interval 50–170 K, for the Ce(Ni0.62Co0.38)Sn
compound. Choosing the lower-temperature boundary at 50 K we avoid the difficult problem
which must arise if one wants to discuss the valence transition atTv. It has been suggested
that the single-site excitation of the Ce Kondo lattice [4], the electron–phonon interaction
as in the BCS superconductors and/or the elastic constants softening could be responsible
for the large magnetostriction increase above and nearTv [23]. The fitting parameters were
µ = −22 meV (measured from the centre of gravity of the|J = 5/2〉 multiplet), Mα,1 =
0.7 meV/Ce3+ (≡ 8 K/Ce3+) and Mα,2 = 4.6 meV/Ce3+ (≡ 53 K/Ce3+). The assumed
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Figure 3. Thermal dependence of the ratioω/λt of the volume magnetostriction to the
anisotropic magnetostriction for the Ce(Ni0.62Co0.38)Sn compound, in the range 50–170 K and
for an applied magnetic field of 14 T.

symmetry elastic constants wereCα
11 = (1/9)(2C11 + C33) and Cα

22 = (2/3)(C11 + 2C33),
and therefore the above magnetoelastic parameters are only rough estimates (however, note
that Mα,i/Cα

ii are properly fitted). We can compare our magnetoelastic parameters with
those for well magnetostrictively characterized intermetallics. For instance, for the cubic
Laves phase intermetallics REM2 (RE =rare earth), the tetragonal magnetoelastic parameter
M

γ

2 ranges between−5 and−11 K/RE3+ (M = Ni) [24] and between−4 and−52 K/RE3+

(M = Al) [25]; for the CsCl structure intermetallics CeM,M
γ

2 takes the values 160 K/Ce3+

(M = Zn) and 58 K/Ce3+ (M = Ag) [26]. Therefore the overall conclusion is that the
magnetoelastic coupling isstrong for the present FV intermetallics. This result could in
part justify the gigantic spontaneous volume magnetostrictive ‘jump’ (1ωs ≈ 0.3–2.5%)
observed at the valence transition atTv for 0.35 6 x 6 0.40 [3, 4].
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